IPSJ SIG Technical Report

Vo0l.2022-0S-156 No.9
2022/7/27

Accelerating TCP/IP Communications
in Rootless Containers by Socket Switching

Naok1 Marsumoro!-?

AKIHIRO SupaZ-P)

Abstract: “Rootless containers” is a concept to run the entire container runtime and containers without the root priv-
ileges. It protects the host environment from attackers exploiting container runtime vulnerabilities. However, when
rootless containers communicate with external endpoints, the network performance is very low compared to rootful
containers because of the overhead of the user-land TCP/IP implementation called slirp4netns”.

In this paper, we propose “bypass4netns” that accelerate TCP/IP communications in rootless containers by by-
passing slirp4netns. bypass4netns uses sockets allocated on the host. It switches socket file descriptors in
containers to the host’s socket file descriptors by intercepting syscalls and injecting the file descriptors, using
ioctl(SECCOMP_IOCTL_NOTIF_ADDFD). We confirmed that rootless containers with bypass4netns can achieve more
than 10 times faster throughput than rootless containers without it.

Keywords: Rootless Containers, Linux Network Namespaces, Seccomp User-space Notification

1. Introduction

In modern computing resource sharing, it is common to sep-
arate the execution environment in terms of security and conve-
nience. There are some methods to isolate the execution environ-
ment. A common one is to use virtual machines(VMs). VMs vir-
tualize the entire machine. Therefore, this method has overhead
from virtualization itself and from running an OS on each VM.
The other method is containers. Containers achieve the isola-
tion by separating userland processes with Linux kernel features.
They have the advantage of higher speed performance and more
efficient use of computing resources compared to VMs.

A software stack that provides containers using Linux kernel
features is called a “Container Runtime”. There are some con-
tainer runtimes such as Docker[1] and Podman[2]. They provide
not the only container itself but also utilities to create and dis-
tribute container images.

Processes in a container cannot manipulate the host because
the processes in the container run in an environment isolated from
the host. The isolation is provided by Linux kernel features like
namespaces[3] and capabilities[4]. Therefore, a process in a con-
tainer cannot perform operations including malicious operations
on the host side without explicit configurations. However, vul-
nerabilities in the container runtime or Linux kernel may allow
processes in a container to manipulate the host side[5]. In this
case, since the container runtime is running with root privileges,
the vulnerability in the container runtime can be used to perform
malicious operations or run a malicious code with root privileges

Kyoto University

NTT Software Innovation Center
¥ mt2.naoki@net.ist.i.kyoto-u.ac.jp
" akihiro.suda.cz@hco.ntt.co.jp

(© 2022 Information Processing Society of Japan

on the host side. CVE-2019-14271[6], which allows a malicious
NSS library to be loaded, is known as such vulnerability.

Rootless containers[7] is a container runtime improving the
security of containers by running itself without root privileges.
Even if the runtime has vulnerabilities, malicious operations or
malicious codes are not executed with root privileges. Rootless
containers use some methods like user namespaces to enable a
container runtime to run without root privileges. However, there
are some problems caused by these methods. One of them is low
network performance. When container runtime runs without root
privileges, the networking system of container runtime with root
privileges cannot be used as it is. Therefore, networking compo-
nents called RootlessKit[8] and slirp4netns[9] are used to pro-
vide the same functionality in an unprivileged environment. The
networking performance for external endpoints with these com-
ponents is low.

In this paper, we propose bypass4netns, a method to bypass
the communication performance bottleneck in rootless containers
and provide network functionality with equivalent performance
to that of a rootful container. bypass4netns uses socket switching
to bypass the communication bottleneck from inside a container
to the outside and from the outside to the inside of the container.
Socket switching is to switch a socket created in the process in the
container to a socket created on the host. Socket switching is ac-
complished by dynamically handling system calls with Seccomp
User-space Notification(Seccomp Notify)[10]. If socket switch-
ing is needed, sockets are switched with Seccomp Notify’s SEC-
COMP_IOCTL_NOTIF_ADDFD. We implemented bypass4netns
and confirmed that the throughput is 10 times faster than that of
rootless containers without bypass4netns.

The following is the structure of this paper. Section 2 describes
the background of rootless containers, Section 3 describes the de-

IPSJ SIG Technical Report

sign of bypass4netns, Section 4 describes the analysis of socket
behavior, Section 5 describes the implementation of the prototype
system and the evaluation, Section 6 shows the performance eval-
uation results, Section 7 discusses the security Consideration and
the limitations of bypass4netns, and Finally, Section 8 summa-
rizes this paper.

2. Backgrounds

2.1 Rootless Containers

In ordinary containers, their container runtimes run with root
privileges. If the container runtimes have a vulnerability that al-
lows codes to run with root privileges on the host, malicious peo-
ple can execute their malicious codes on the host environment
with root privileges by exploiting the vulnerability.

Rootless containers improve the container’s security by run-
ning its runtime without root privileges. If the container run-
time has vulnerabilities that allow malicious codes to be executed
outside the containers, the codes are executed without root privi-
leges. So that, the damage caused by malicious codes will be less
than that of executed in container runtime with root privileges.

In ordinary container runtimes, root privileges are used when
they create namespaces like PID namespaces and configure the
network including network namespaces. In rootless containers,
it uses user namespaces(UserNS) to create namespaces with-
out root privileges. UserNS maps a non-root user like uid=1000
to a fake root user (uid=0). In the host environment, the user is
mapped to a non-root user. By using this, container runtimes can
perform operations that require root privileges like creating PID
namespaces and Mount namespaces.

However, operations related to network interfaces cannot be
realized with UserNS alone. This is because that container run-
time needs to create a veth pair both in a container and a host.
This veth pair is the entrance and exit point for container com-
munication and requires root privileges to create in a host. To
achieve container networking without root privileges, rootless
containers have networking components called RootlessKit and
slirp4netns. Inside a rootless container, there is an intermediate
network namespaces(NetNS), a bridge for communication be-
tween containers, and a tap device for communication with the
outside world. Each container creates additional NetNS within
the intermediate NetNS to achieve network isolation similar to
that of a normal container. Relaying of communication between
the intermediate NetNS and hosts is achieved using RootlessKit
and slirp4netns.

2.1.1 RootlessKit’s port driver

RootlessKit[8] enables rootless containers including creating
namespaces, making /etc writable and managing slirp4netns pro-
cesses. The port driver is a component contained in RootlessKit
to relay communications from outside of an intermediate NetNS
to inside of an intermediate NetNS with rootless. When a specific
port is to be exposed to the outside world, it has a correspondence
between the port in the container and the port on the host to be
exposed to the outside. For example, it is used to expose the con-
tainer’s port 80 to the outside world on the host’s port 8080. In
an ordinary container, this is achieved by combining a veth pair
and iptables. However, this is not possible in rootless containers

(© 2022 Information Processing Society of Japan

Vo0l.2022-0S-156 No.9

2022/7/27
Host Intermediate NetNS
Copy messages
between fd in host and in parent netns Container
| RootlessKit j| RootlessKit :|
;’j’ (Parent) (child) :
Connection Container
Fig.1 The overview of RootlessKit’s port driver
Host [Intermediate NetNS
Process packets from TAP
and establish connection - CormEmar
veth
: o]
& slirpdnetns JIREA =
I R (el =
Connection ® Container
TAP device veth
works as default gateway — :|
-

Fig. 2 The overview of slirp4netns

because the creation of a veth pair between the host and the con-
tainer requires root privileges. Therefore, RootlessKit provides a
method to expose containers’ ports without veth pairs.

Fig. 1 shows the overview of RootlessKit’s port driver. When
port driver exposes a specific port like 8080, a parent daemon
is started on the host to listen for the specified port. When the
connection is accepted in the parent daemon, the accepted file de-
scriptor(fd) is sent via a Unix domain socket to the child daemon
of RootlessKit in the intermediate NetNS containing the con-
tainer. The child daemon connects to the port of the container.
Then, by copying messages between the fd for external connec-
tion and the fd for container connection, the child daemon relays
messages from the outside to the inside. Since the connection
is terminated once in the kernel and only the message is copied
in userland, it is faster than a method used in slirp4netns. How-
ever, on the container side, the source address of the connection
is rewritten to the localhost.

2.1.2 slirp4netns

slirp4netns[9] is a component that provides rootless commu-
nication from inside a container to the outside. There are two
types of container communication. The first one is inter-container
communication. This is already possible through veth pairs and
bridges created in the intermediate NetNS. The second one is out-
bound communication to endpoints outside of the intermediate
NetNS. This communication is relayed by slirp4netns.

Fig. 2 shows the overview of slirp4netns. slirp4netns uses the
tap device in intermediate NetNS to listen for packets to exter-
nal endpoints. At this time, the tap device’s fd is sent from
within the intermediate NetNS to the host. On the host side,
slirp4netns receives Ethernet frames and processes them with a
userland TCP/IP stack called Slirp[11]. Non-root processes in-
cluding slirp4netns are not assigned CAP_NET_RAW in terms of
security. This is because CAP_NET_RAW allows unprivileged

IPSJ SIG Technical Report

users to sniff and snoop arbitrary packets. So, slirp4netns can-
not send the Ethernet frames directly. Slirp reconstructs Ether-
net frames and acquires protocols, messages, and the destination
of the message. slirp4netns converts messages into compatible
syscalls based on them. In more detail, it creates a socket like
SOCK_STREAM or SOCK_DGRAM, connects to the external
endpoint, and forwards the message. The received message is
also processed by slirp, divided into packets, and sent from the
tap device, which sends the message to the appropriate container.

Since the communication relay is achieved by processing pack-
ets with a tap device, it has the advantage of being compatible
with iptables and CNI plugins. However, it has the disadvan-
tage of low performance and increased resource usage because
all packets must be processed on the user-land process.

2.2 Ixc-user-nic

Ixc-user-nic[12] is a component to create veth pair in a con-
tainer and on a host without root privileges. It creates veth pair as
same as veth pair in rootful containers. Since the Ixc-user-nic is a
setuid-root program, it can be launched by a non-root user to cre-
ate a veth pair. However, Ixc-user-nic effectively runs as the root
user. So that, if Ixc-user-nic has a vulnerability such as CVE-
2017-5985[13] or CVE-2018-6556[14], malicious operations or
codes can be executed with root privileges.

While Ixc-user-nic provides much better throughput than
slirp4netns, lxc-user-nic is rarely used in modern rootless con-
tainers due to that security concerns.

2.3 Seccomp Notify

Seccomp(secure computing mode)[15] is a Linux kernel
module for controlling syscalls that can be executed by processes.
Seccomp can be combined with the container runtime to control
syscalls that are executed by processes in a container. Seccomp
has supported only static control using predefined policies. With
Linux kernel 5.0, dynamic control of syscalls is supported. It is
called Seccomp Notify. Seccomp Notify receives information
about the syscalls about to be executed via fd, called notify fd.
Then, it is possible to dynamically decide whether or not to exe-
cute the call based on its arguments.

With Linux kernel 5.9, the function called SEC-
COMP_IOCTL-NOTIF_ADDFD was added to seccomp.
SECCOMP_IOCTL_NOTIF_ADDFD allows the user to in-
stall a file descriptor of a supervisor into a target process when
a system call is about to be executed. This allows the target
process to use the file descriptor that specifies the supervisor’s
file description or socket.

3. The Design of bypass4netns

We propose bypassdnetns, a method to improve commu-
nication performance by switching sockets. RootlessKit and
slirp4netns relay communications between the host and container
NetNS with a daemon or tap device in an intermediate NetNS. by-
pass4netns bypasses an intermediate NetNS by switching sockets
created in the container to sockets created on the host side, with-
out using a tap device.

(© 2022 Information Processing Society of Japan

Vo0l.2022-0S-156 No.9
2022/7/27

bypass4netns
ioct(SECCOMP_IOCTL_NOTIF_ADDFD)

. Process
Switching 1.Notify
socket file descriptor
Socket syscalls
file descriptor (e.g., connect)

Socket seccomp

file descriptor Notify fd
|

2.ioctl
3.Socket Switching

seccomp

4 Syscall
execution

Fig. 3 The overview of bypass4netns

Rootless container

Kernel

i

A socket
allocated on a host

A socket
allocated in a container

3.1 The Overview of bypassd4netns

Fig. 3 shows the overview of bypass4netns. bypass4netns im-
proves communication performance to or from external endpoints
by using sockets created on the host rather than sockets created
inside the container. External endpoints mean endpoints that exist
outside of intermediate NetNS.

bypass4netns works with the rootless container runtime and
uses seccomp notify for socket switching. The two major roles
of bypass4netns are the creation of sockets on the host and the
switching of sockets in the container. bypass4netns waits for sec-
comp notifications and processes them depending on the kind of
syscalls. Inter-container communication is not handled by by-
pass4netns because it uses veth pairs and bridges in the interme-
diate netns as before. External communications are handled by
bypass4netns. Therefore, bypass4netns handles syscalls that can
have a destination address such as connect, sendto, and so on.
When the communication is turned out to be to the external end-
point, bypass4netns performs the socket switching.

bypass4netns uses sockets created on the host, and this behav-
ior is similar to an option net=host. An option net=host means
that a container uses a NetNS as same as the host. However, us-
ing this option results in leaking abstract Unix domain sockets
[16]. To ensure the security, bypass4netns does not use the host’s
NetNS directly and creates sockets selectively on the host. This
design also allows assigning unique IP addresses to each of the
containers for inter-container communications.

3.2 Socket Switching With Seccomp Notify

As shown in Fig. 3, socket switching is performed with SEC-
COMP_IOCTL_NOTIF_ADDFD. bypass4netns receives a notify
message containing information about the syscall via notify fd.
After validation of message IDs, bypass4netns reads the informa-
tion about the syscall. For syscalls that are not related to socket
switching, a response message that allows syscall execution is
sent. If a syscall set socket options, all options are recorded for
each socket.

When a syscall that determines whether the communication
is to a container or an external endpoint is handled, the socket
switching is performed as shown in Algorithm 1. When a
syscall is handled, bypass4netns creates a new socket. The
socket options between the socket in the container and the
newly created socket are needed to be in the same state. by-

IPSJ SIG Technical Report

Algorithm 1 Socket switching procedure

1: Read syscall arguments

2: if The syscall is not related to the socket then
3 Allow to execute the syscall and return

4: end if

5: if The syscall specifies a destination then

6 if The destination is an external endpoint then
7 Perform socket switching and return

8 else

9 Allow to execute the syscall and return
10: endif

11: end if

12: if The syscall sets options to the socket then
13: Record socket option

14: end if

15: Allow to execute the syscall and return

passd4netns configures the new socket based on the record of
the options corresponding to the handled socket. Then, using
SECCOMP_IOCTL_NOTIF_ADDFD, bypass4netns switches the
socket pointed by the file descriptor in the argument of the han-
dled syscall to the created socket.

4. Analyzing Socket Behavior

Section 3 describes the design of bypass4netns and the
overview of socket switching. In an implementation, the below
information is required.

e What kind of syscalls are executed for sockets?

e What are the syscalls that specify the destination of a socket?

e What are the socket-related syscalls that are executed before

socket switching?
To implement bypass4netns, these points need to be investigated
in advance.

Operations on sockets are performed by syscalls with file de-
scriptors in their arguments. Some syscalls are used for more
than just sockets, or some syscalls take file descriptors as argu-
ments but are not used for sockets. Therefore, syscalls for sock-
ets are not explicitly given. We investigated the above points by
collecting the syscalls that are performed on sockets in common
applications(ping, wget, curl, nginx, apache).

To collect the syscalls, we used a patched tracee[17], which
is an eBPF-based syscall tracer. We implemented the analysis
script to retrieve the operations on each file descriptor of the sock-
ets from the collected syscalls trace. This script outputs the se-
ries of syscall executions on each socket. The target sockets are
SOCK_DGRAM or SOCK_STREAM. This script also takes care
of fork and clone since file descriptors are replicated between
processes by fork and clone,

Table 1 shows the syscalls executed to sockets. sendto(dst)
means sendto(2) with destination address and bind(port=0)
means bind(2) with port = 0 in its arguments. From Table 1,
syscalls that specify the destination address or the port to be pub-
lished are found. The syscalls are connect, sendto(dst), and bind
connect,
The results are shown in Table 2.

We investigated syscalls executed before

sendto(dst), and bind.

(© 2022 Information Processing Society of Japan

Vo0l.2022-0S-156 No.9

2022/7/27

syscalls ping | wget | apache | nginx (l(f;:nf?’t) (;Ef\r/g)

socket 19 32 2 2 2 2
getsockopt 0 0 0 0 5

connect 18 30 0 0 2 0
write 0 0 0 0 22551 8
getsockname | 9 14 1 0 2 3
getpeername | 0 0 0 0 1 2

select 0 0 0 0 4524 56998
fentl 0 4 8 0 4 2
close 19 32 2 1 2 3
setsockopt 0 0 6 4 1 5

read 0 2 4 0 8 19006
accept 0 0 0 0 0 4
bind 0 0 1 2 0 2
listen 0 0 1 4 0 2
bind(port=0) 1 2 0 0 0 0
sendto(dst) 2 4 0 0 0 0
poll 2 5 0 0 0 0
recvfrom 3 4 0 2 0 0
ioctl 0 2 0 2 0 0
writev 0 2 1 1 0 0
Iseek 0 2 0 0 0 0
readv 0 10 0 0 0 0
accept4 0 0 2 2 0 0
epoll_wait 0 0 7 36 0 0
shutdown 0 0 1 0 0 0
sendfile 0 0 0 1 0 0

Table 1 The number of syscalls related to sockets traced from applications

syscalls | ping | wget | apache | nginx ipfarf?) iperf3
(client) (server)
getsockopt | 2 0 0 0 0 0
setsockopt | 0 4 0 0 4 3
close 0 0 0 0 1 0
ioctl 0 0 0 0 0 2

Table 2 The number of syscalls executed before socket switching

Container information
Start/stop operations

Container
bypass4netns

Container
bypass4netns

Container
bypass4netns

Fig. 4 The implementation of bypass4netns

bypassdnetnsd

Configuring bypassé4netns
for each container

Syscalls(fentl, ioctl, setsockopt) which set socket options are
executed.

From these results, we can say that syscalls with destination
address or binding port are connect, sendto(dst) and bind. fctnl,
ioctl,and setsockopt configure socket options and need to be
recorded.

5. Implementation

We implemented bypass4netns based on the design described
in Section 3 and the analysis in Section 4. The target container
runtime is nerdctl[18]. As shown in Fig. 4, we implemented
bypass4netns and bypass4netnsd.
some patches in nerdctl to support bypass4netns. The imple-
mentation is published at https://github.com/naoki9911/
bypass4netns. Upstreamed version is available at https:

Also, we implemented

IPSJ SIG Technical Report

N w B v
o o o o

Throughput(Gbps)
=

10

Throughput(Gbps)

(O]

Vo0l.2022-0S-156 No.9
2022/7/27

@ Rootful

Container - Host

B Rootless w/o bypass4netns

Host - Container

Rootless w/ bypass4netns

Fig.5 Throughput in case A

Other host > Container

Container - Other host

[C1Rootful B Rootless w/o bypass4netns Rootless w/ bypass4netns

Fig. 6 Throughput in case B

//9ithub.com/rootless-containers/bypass4netns.
bypass4netns

bypass4netns receives seccomp notifications from containers
and switches sockets as needed. bypass4netns itself is assigned
on a per-container basis.
bypass4netnsd

bypass4netnsd manages bypass4netns assigned to each con-
tainer. When a container with bypass4netns enabled starts, by-
pass4netnsd receives information from nerdctl such as the port
to be published and the ID of the target container. bypass4netnsd
starts bypass4netns based on such information and terminates by-
pass4netns when a container is stopped.
nerdctl

nerdctl[18] is a Docker-compatible CLI for containerd[19]. it
cooperates with containerd and provides container functionality.
In rootless containers, nerdctl configures rootless components in-
cluding RootlessKit and slirp4netns in order when a container
starts or stops. When a container with bypass4netns starts, nerd-
ctl notifies information about the container to bypass4netnsd and
waits for bypass4netns to start. Also, when the container stops,
nerdctl notifies bypass4netnsd and waits for bypass4netns to stop.

6. Performance Evaluation

We evaluated the performance of communications with by-
pass4netns implementation described in Section 5. The per-
formance evaluation is performed on Hyper-V virtual ma-
chines(VMs). The detailed specifications are as follows.

e Host CPU: Ryzen7 PRO 5850U (8Core 16Threads)

e Host Memory: 32GB

e Host OS: Windows 11 Pro (build 22000.739)

e VM assigned CPU: 4 Core

e VM assigned Memory: 8GB

e VM OS: Ubuntu 21.10 (kernel 5.13.0-1025-azure)

6.1 Throughput

We measured throughput using iperf3. The performance was
evaluated in two cases, Case A. throughput between a con-
tainer and host on the same VM and Case B. throughput be-
tween a container and different VM.
Case A. A container and a host on the same VM

The result is shown in Fig. 5. From a container to a host, root-
ful containers achieved 38.6Gbps, rootless containers without by-
pass4netns achieved 452Mbps, and rootless containers with by-
pass4netns achieved 41.4Gbps. From a host to a container, root-

(© 2022 Information Processing Society of Japan

w
S

~
@

N
@

CPU Usage(user + sys) %
= »
5] S

=== w/ bypass4netns(case A)
—— w/ bypass4netns(case B)

2

SAnnan MW

AR]
v

Elapsed time(seconds)

noa gt
“'\ll\\lll:

n
'l'u
el N

1
] vy
vy v '

120 &2

——w/o0 bypass4netns(case A)
~ == w/o bypass4netns(case B)

Fig.7 CPU utilization when doing iperf3 in each case

rootful rootless without rootless with
bypass4netns bypass4netns
673 922 198

Table 3 The number of the kernel function call to process curl

ful containers achieved 39.2Gbps, rootless containers without by-
pass4netns achieved 35.8Gbps, and rootless containers with by-
pass4netns achieved 39.8Gbps.

Case B. A container and a different VM

The result is shown in Fig. 6. From a container to a host, root-
ful containers achieved 16.8Gbps, rootless containers without by-
pass4netns achieved 1.11Gbps, and rootless containers with by-
pass4netns achieved 21.0Gbps. From a host to a container, root-
ful containers achieved 16.0Gbps, rootless containers without by-
pass4netns achieved 13.6Gbps, and rootless containers with by-
pass4netns achieved 16.1Gbps.

In case A, the throughput with rootless containers without by-
pass4netns is slower than that of case B. This may be because
Slirp implementations are less mature than Linux implementa-
tions

In both cases, We measured CPU utilization (user + sys) with
the rate of iperf3 limited to 1Gbps The measurement results
are shown in Fig. 7. CPU utilization exceeded 25% when by-
pass4netns is not enabled. This is due to packet processing
in slirp4netns, which relays communications between hosts and
containers. On the other hand, when bypass4netns is enabled,
the CPU utilization is low. This is because bypass4netns only
switches sockets and the communication itself is handled by the
kernel as is in the rootful containers.

In the results of Fig. 5 and Fig. 6, we can see that the
bypassdnetns is faster than the rootful container. Using ipf-
trace2[20], which retrieves the functions performed to process

IPSJ SIG Technical Report

without with
bypass4netns bypass4netns
execution time(usec) 3.22 100.05

Table 4 The overhead of syscalls

packets in the kernel, we measured the number of the functions
required to process “curl google.com”. As a remark, the num-
ber is sum of the number of kernel function measured in each
NetNS. The result is shown in Table 3. Although simple com-
parisons cannot be made because each kernel function requires a
different cost to compute, it can be seen that the number of kernel
functions in rootless with bypass4netns is smaller than that with
rootful container. The reason for this may be that bypass4netns
does not require NAT and other packet processing with iptables
or veth pair, which is necessary for the rootful container. As a
result, rootless with bypass4netns is considered to be faster and
more efficient than the rootful container.

6.2 Syscall Handling Overhead

bypass4netns handles syscalls dynamically using seccomp no-
tify. Therefore, there is a certain overhead in syscall executions.
We measured the overhead of syscall execution in bypass4netns
by using a program that simply repeats socket, connect, and
close. The measurements are perfromed one million times and
the means are calculated. The results are shown in Table 4. The
results show that the container with bypass4netns takes about 30
times longer to execute the program than a container without by-
pass4netns. Although syscall overhead exists, the results of the
analysis in Section 4 indicate syscalls need to be handled. There-
fore, the overhead can be reduced by setting the seccomp profile
appropriately. In addition, in real applications, other syscalls are
also executed and the number of them is larger than that of socket-
related syscalls. So that the impact of overhead is considered to
be relatively small.

7. Discussion

7.1 The Combination With Other Components

bypass4netns is a mechanism to improve communication per-
formance by bypassing intermediate NetNS isolation with sock-
ets created on the host. If any communication policies such as
iptables policies are set in the intermediate NetNS, they will be
ignored. Therefore, it is difficult to control communications using
iptables or CNI plugins in intermediate NetNS.

7.2 Security Consideration

External communications with bypass4netns are treated as
same as other communications on the host. This is because the
sockets switched by bypass4netns are created on the host. With-
out bypass4netns, as mentioned above, container communication
can be controlled within the intermediate NetNS. However, by-
pass4netns cannot provide access control using iptables or CNI
plugins. Therefore, a policy that allows communication from the
host and prevents the container cannot be applied. Access control
for containers is a future issue.

Seccomp notify has the probability to allow the container to
connect to the host’s loopback by exploiting a time-of-check to

(© 2022 Information Processing Society of Japan

Vo0l.2022-0S-156 No.9
2022/7/27

time-of-use(TOCTOU) attack. This may allow a container to
connect to other services hosted on the host. We will address
this issue in the future.

7.3 Limitations of bypass4netns

Currently, bypass4netns does not care about VXLAN which is
used for an overlay network. Containers are often used with con-
tainer orchestration tools like Kubernetes. A cluster of Kuber-
netes is often deployed with overlay networking using VXLAN.
However, the configuration of VXLAN interfaces requires root
privileges. Usernetes[21] is a Kubernetes distribution based on
rootless containers. In Usernetes, by creating VXLAN interfaces
in the intermediate NetNS, an overlay network is achieved with-
out root privileges. This causes a problem of slow inter-container
communications. However, bypass4netns only supports bypass-
ing of userland sockets. VXLAN interfaces are provided by the
Linux kernel and the sockets are created in kernel-land. by-
pass4netns cannot handle such kernel land sockets and cannot be
used in Usernetes to accelerate network communications.

8. Conclusion

In this paper, we propose bypass4netns, a method to improve
the TCP/IP communication performance to or from the exter-
nal endpoints in rootless containers. In a rootless container, the
component to relay communications between the intermediate
NetNS for the rootless container and the host is the bottleneck.
bypass4netns switches the socket in the container to the socket
created on the host and bypasses the relay component. We imple-
mented bypass4netns and confirmed that it can achieve communi-
cation speeds 10 times faster than conventional rootless contain-
ers. Some future issues exist including addressing security con-
cerns and combining with more complicated systems like User-
netes.

References

[1] Docker, Inc.: Docker, https://github.com/docker (2013).

Red Hat, Inc.: Podman, https://github.com/containers/
podman (2018).

[3] Kerrisk, M. et al.: namespaces(7), https://man7.org/linux/
man-pages/man7/namespaces.?7.html (2021).

[4] Kerrisk, M. et al.: capabilities(7), https://man7.org/linux/
man-pages/man7/capabilities.7.html (2021).

[5] Lin, X., Lei, L., Wang, Y., Jing, J., Sun, K. and Zhou, Q.: A Measure-
ment Study on Linux Container Security: Attacks and Countermea-
sures, ACM, p. 418-429 (online), DOI: 10.1145/3274694.3274720
(2018).

[6] NIST: CVE-2019-14271, https://nvd.nist.gov/vuln/detail/
CVE-2019-14271 (2019).

[7] Sarai, A. et al.: Rootless Containers, https://rootlesscontaine.
rs/ (2017).

[8] Suda, A. et al: RootlessKit, https://github.com/
rootless-containers/rootlesskit (2018).

[9] Suda, A. et al: slirp4netns, https://github.com/
rootless-containers/slirp4netns (2018).

[10] Kerrisk, M. et al.: seccomp_unotify(2), https://man7.org/linux/
man-pages/man2/seccomp_unotify.2.html (2021).

[11] Gasparovski, D.: Slirp, https://web.archive.org/web/
19970728154029/http://ucnet.canberra.edu.au/slirp/
slirp.doc.txt (1995).

[12] Hallyn, S. et al.: Ixc-user-nic, https://github.com/lxc/1xc/
blob/master/doc/lxc-user-nic.sgml.in (2013).

[13] NIST: CVE-2017-5985, https://nvd.nist.gov/vuln/detail/
CVE-2017-5985 (2017).

[14] NIST: CVE-2018-6556, https://nvd.nist.gov/vuln/detail/

i Vol.2022-0S-156 No.9
IPSJ SIG Technical Report P

CVE-2018-6556 (2018).

[15] Kerrisk, M. et al.: seccomp(2), https://man7.org/linux/
man-pages/man2/seccomp.2.html (2021).

[16] Suda, A.. [CVE-2020-15257] Don’t use -net=host . Don’
t use spec.hostNetwork ., https://medium.com/nttlabs/
dont-use-host-network-namespace-f548aeeef575 (2020).

[17] Shakury, I. et al.: tracee, https://github.com/aquasecurity/
tracee (2019).

[18] Suda, A. et al.: nerdctl, https://github.com/containerd/
nerdctl/ (2020).

[19] Crosby, M. et al.: containerd, https://github.com/containerd/
containerd (2016).

[20] Hayakawa, Y. et al: ipftrace2, https://github.com/
YutaroHayakawa/ipftrace2 (2020).
[21] Suda, A. et al: Usernetes, https://github.com/

rootless-containers/usernetes (2018).

(© 2022 Information Processing Society of Japan 7

